Bounds on the Maximal Cardinality of an Acute Set in a Hypercube

Sathwik Karnik

MIT PRIMES Conference: May 19-20, 2018

Outline

(1) Introduction
(2) Discrete Acute Set Problem
(3) Bounds in Discrete Acute Set Problem
(4) Future Work
(5) Questions?

Outline

(1) Introduction

(2) Discrete Acute Set Problem

(3) Bounds in Discrete Acute Set Problem

4) Future Work

(5) Questions?

Problem Statement

- Definition: Let S be a set of points in d-dimensional real space. S is an acute set if any three distinct points form an acute angle.

Problem Statement

- Definition: Let S be a set of points in d-dimensional real space. S is an acute set if any three distinct points form an acute angle.
- Question: What is the maximal cardinality (size, denoted as $f(d)$) of an acute set in \mathbb{R}^{d} ?

Problem Statement

- Definition: Let S be a set of points in d-dimensional real space. S is an acute set if any three distinct points form an acute angle.
- Question: What is the maximal cardinality (size, denoted as $f(d)$) of an acute set in \mathbb{R}^{d} ?
- In other words, what is the maximal cardinality of a subset of \mathbb{R}^{d} such that for any $x, y, z \in S,\langle x-y, z-y\rangle>0$?

Points form an Acute Set

Figure 1: $S=\{(0,0,0),(0,1,0.25),(0.75,0.75,-0.75),(1,0,0.25),(1,0.97,0)\}$

Points do not form an Acute Set

Figure 2: $S=\{(0,0,0),(0,1,1),(1,0,1),(1,1,0),(-2,-1 / 3,0)\}$

Background

- 1972: Danzer and Grünbaum proposed the acute set problem, proved that $f(d) \geq 2 d-1$, conjectured that this bound was the sharpest lower bound, and proved that $f(d)<2^{d}$

Background

- 1972: Danzer and Grünbaum proposed the acute set problem, proved that $f(d) \geq 2 d-1$, conjectured that this bound was the sharpest lower bound, and proved that $f(d)<2^{d}$
- 1983: Erdős and Füredi disproved the conjecture for the lower bound and showed that $f(d) \geq \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)^{d}$

Background

- 1972: Danzer and Grünbaum proposed the acute set problem, proved that $f(d) \geq 2 d-1$, conjectured that this bound was the sharpest lower bound, and proved that $f(d)<2^{d}$
- 1983: Erdős and Füredi disproved the conjecture for the lower bound and showed that $f(d) \geq \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)^{d}$
- 2011: Harangi improved the bound to $f(d) \geq c\left(\sqrt[10]{\frac{144}{23}}\right)^{d}$

Background

- 1972: Danzer and Grünbaum proposed the acute set problem, proved that $f(d) \geq 2 d-1$, conjectured that this bound was the sharpest lower bound, and proved that $f(d)<2^{d}$
- 1983: Erdős and Füredi disproved the conjecture for the lower bound and showed that $f(d) \geq \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)^{d}$
- 2011: Harangi improved the bound to $f(d) \geq c\left(\sqrt[10]{\frac{144}{23}}\right)^{d}$
- April 2017: Zakharov improved this bound to $f(d) \geq 2^{d / 2}$

Background

- 1972: Danzer and Grünbaum proposed the acute set problem, proved that $f(d) \geq 2 d-1$, conjectured that this bound was the sharpest lower bound, and proved that $f(d)<2^{d}$
- 1983: Erdős and Füredi disproved the conjecture for the lower bound and showed that $f(d) \geq \frac{1}{2}\left(\frac{2}{\sqrt{3}}\right)^{d}$
- 2011: Harangi improved the bound to $f(d) \geq c\left(\sqrt[10]{\frac{144}{23}}\right)^{d}$
- April 2017: Zakharov improved this bound to $f(d) \geq 2^{d / 2}$
- September 2017: Gerencsér and Harangi showed that $f(d) \geq 2^{d-1}+1$, thus determining the growth rate of $f(d)$

Outline

(1) Introduction
(2) Discrete Acute Set Problem

(3) Bounds in Discrete Acute Set Problem

4 Future Work

(5) Questions?

Motivation and Problem Statement

- We consider the acute set problem in a d-dimensional unit hypercube.

Motivation and Problem Statement

- We consider the acute set problem in a d-dimensional unit hypercube.
- Discrete Acute Set Problem: find the maximal cardinality (denote it as $h(d)$) of an acute set of points on the d-dimensional hypercube $\{0,1\}^{d}$.

Motivation and Problem Statement

- We consider the acute set problem in a d-dimensional unit hypercube.
- Discrete Acute Set Problem: find the maximal cardinality (denote it as $h(d)$) of an acute set of points on the d-dimensional hypercube $\{0,1\}^{d}$.
- Example in $\{0,1\}^{3}$:

Motivation and Problem Statement

- We consider the acute set problem in a d-dimensional unit hypercube.
- Discrete Acute Set Problem: find the maximal cardinality (denote it as $h(d)$) of an acute set of points on the d-dimensional hypercube $\{0,1\}^{d}$.
- Example in $\{0,1\}^{3}$:

Outline

(1) Introduction
(2) Discrete Acute Set Problem
(3) Bounds in Discrete Acute Set Problem

4 Future Work

(5) Questions?

Improved Lower Bound for $h(d)$

- $\{(0,0, \ldots, 0),(1,1, \ldots, 1,0), \ldots,(0,1, \ldots, 1)\}$ form an acute set with $d+1$ points (called a simplex), resulting in $h(d) \geq d+1$

Improved Lower Bound for $h(d)$

- $\{(0,0, \ldots, 0),(1,1, \ldots, 1,0), \ldots,(0,1, \ldots, 1)\}$ form an acute set with $d+1$ points (called a simplex), resulting in $h(d) \geq d+1$
- By concatenating points in an acute set in $\{0,1\}^{d}$ ($S=\left\{v_{0}, v_{1}, \ldots, v_{h(d)-1}\right\}$) to form points in $\{0,1\}^{3 d}$, we find that $h(3 d) \geq(h(d))^{2}$, which results in a bound of $h(d) \geq 2^{2^{\left\lfloor\log _{3} d\right\rfloor}}$

Improved Lower Bound for $h(d)$

- $\{(0,0, \ldots, 0),(1,1, \ldots, 1,0), \ldots,(0,1, \ldots, 1)\}$ form an acute set with $d+1$ points (called a simplex), resulting in $h(d) \geq d+1$
- By concatenating points in an acute set in $\{0,1\}^{d}$ ($S=\left\{v_{0}, v_{1}, \ldots, v_{h(d)-1}\right\}$) to form points in $\{0,1\}^{3 d}$, we find that $h(3 d) \geq(h(d))^{2}$, which results in a bound of $h(d) \geq 2^{2^{\left\lfloor\log _{3} d\right\rfloor}}$
- Through a similar concatenation of points in an acute set in $\{0,1\}^{d}$ and two points in $\{0,1\}^{3}$ to form points in $\{0,1\}^{d+6}$, we find that $h(d+6) \geq 4 h(d)$, which results in a bound of $h(d) \geq 2^{d / 3}$, which is stronger for larger dimensions

Concatenation Example

- Let $v_{0}=(0,0,0), v_{1}=(1,1,0), v_{2}=(1,0,1)$, and $v_{3}=(0,1,1)$ be the points in an acute set in the 3-dimensional cube.

Concatenation Example

- Let $v_{0}=(0,0,0), v_{1}=(1,1,0), v_{2}=(1,0,1)$, and $v_{3}=(0,1,1)$ be the points in an acute set in the 3-dimensional cube.
- The point $\left(v_{0}, v_{0}, v_{0}\right)$ represents the point $(0,0,0,0,0,0,0,0,0)$ in the 9-dimensional hypercube.

Concatenation Example

- Let $v_{0}=(0,0,0), v_{1}=(1,1,0), v_{2}=(1,0,1)$, and $v_{3}=(0,1,1)$ be the points in an acute set in the 3-dimensional cube.
- The point $\left(v_{0}, v_{0}, v_{0}\right)$ represents the point $(0,0,0,0,0,0,0,0,0)$ in the 9-dimensional hypercube.
- Here are 16 points in $\{0,1\}^{9}$ that form an acute set:

$$
\begin{aligned}
& \left(v_{0}, v_{0}, v_{0}\right),\left(v_{0}, v_{1}, v_{1}\right),\left(v_{0}, v_{2}, v_{2}\right),\left(v_{0}, v_{3}, v_{3}\right) \\
& \left(v_{1}, v_{0}, v_{1}\right),\left(v_{1}, v_{1}, v_{2}\right),\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{3}, v_{0}\right) \\
& \left(v_{2}, v_{0}, v_{2}\right),\left(v_{2}, v_{1}, v_{3}\right),\left(v_{2}, v_{2}, v_{0}\right),\left(v_{2}, v_{3}, v_{1}\right) \\
& \left(v_{3}, v_{0}, v_{3}\right),\left(v_{3}, v_{1}, v_{0}\right),\left(v_{3}, v_{2}, v_{1}\right),\left(v_{3}, v_{3}, v_{2}\right)
\end{aligned}
$$

Concatenation Example

- Let $v_{0}=(0,0,0), v_{1}=(1,1,0), v_{2}=(1,0,1)$, and $v_{3}=(0,1,1)$ be the points in an acute set in the 3-dimensional cube.
- The point $\left(v_{0}, v_{0}, v_{0}\right)$ represents the point $(0,0,0,0,0,0,0,0,0)$ in the 9-dimensional hypercube.
- Here are 16 points in $\{0,1\}^{9}$ that form an acute set:

$$
\begin{aligned}
& \left(v_{0}, v_{0}, v_{0}\right),\left(v_{0}, v_{1}, v_{1}\right),\left(v_{0}, v_{2}, v_{2}\right),\left(v_{0}, v_{3}, v_{3}\right) \\
& \left(v_{1}, v_{0}, v_{1}\right),\left(v_{1}, v_{1}, v_{2}\right),\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{3}, v_{0}\right) \\
& \left(v_{2}, v_{0}, v_{2}\right),\left(v_{2}, v_{1}, v_{3}\right),\left(v_{2}, v_{2}, v_{0}\right),\left(v_{2}, v_{3}, v_{1}\right) \\
& \left(v_{3}, v_{0}, v_{3}\right),\left(v_{3}, v_{1}, v_{0}\right),\left(v_{3}, v_{2}, v_{1}\right),\left(v_{3}, v_{3}, v_{2}\right)
\end{aligned}
$$

- In general, when we concatenate 3 points to form an acute set, observe that no two points of the three points are in the same position in other concatenated points.

Improved Upper Bound for $h(d)$

- To understand the growth rate of $h(d)$, we studied the upper bound of $h(d)$
- Observe that $h(d) \leq f(d) \leq 2^{d}$

Improved Upper Bound for $h(d)$

- To understand the growth rate of $h(d)$, we studied the upper bound of $h(d)$
- Observe that $h(d) \leq f(d) \leq 2^{d}$
- Note that adjacent points cannot be elements of the acute set. Thus, $h(d) \leq 2^{d-1}$

Improved Upper Bound for $h(d)$

- To understand the growth rate of $h(d)$, we studied the upper bound of $h(d)$
- Observe that $h(d) \leq f(d) \leq 2^{d}$
- Note that adjacent points cannot be elements of the acute set. Thus, $h(d) \leq 2^{d-1}$
- Further improvement:
- Consider a point P in the acute set and all points diagonally opposite on a 2 -face
- The maximum average number of points in the acute set on a face is $1+\frac{2}{d}$, and there are $(d-1) \cdot d \cdot 2^{d-3} 2$-faces in a hypercube
- After considering overcount, $h(d) \leq\left(1+\frac{2}{d}\right) \cdot 2^{d-2}$

Outline

(2) Discrete Acute Set Problem

(3) Bounds in Discrete Acute Set Problem

4) Future Work

(5) Questions?

Combinatorial Interpretation

- A combinatorial interpretation of the acute set problem is that for any three points x, y, and z in the acute set, there exists three positions in these points so that one of the positions is $\{0,0,1\}$ or $\{1,1,0\}$, another is $\{0,1,0\}$ or $\{1,0,1\}$, and the other is $\{1,0,0\}$ or $\{0,1,1\}$.

Combinatorial Interpretation

- A combinatorial interpretation of the acute set problem is that for any three points x, y, and z in the acute set, there exists three positions in these points so that one of the positions is $\{0,0,1\}$ or $\{1,1,0\}$, another is $\{0,1,0\}$ or $\{1,0,1\}$, and the other is $\{1,0,0\}$ or $\{0,1,1\}$.
- Example of an Acute Set:

$$
\begin{aligned}
& (1,1,1) \\
& (0,0,1) \\
& (1,0,0)
\end{aligned}
$$

- Example of Points Not Forming an Acute Set:

$$
\begin{aligned}
& (1,0,0,1) \\
& (0,0,1,0) \\
& (0,0,1,0)
\end{aligned}
$$

Future Work

- Potential combinatorial generalization: for any k points $v_{1}, v_{2}, \ldots, v_{k}$, there exists k positions such that there exists one of $\{0,0 \ldots, 0,1\}$ or $\{1,1, \ldots, 1,0\},\{0,0 \ldots, 0,1,0\}$ or $\{1,1, \ldots, 1,0,1\}, \ldots$, and one of $\{1,0 \ldots, 0,0\}$ or $\{0,1,1, \ldots, 1\}$. What is the maximal size of such a set?

Future Work

- Potential combinatorial generalization: for any k points $v_{1}, v_{2}, \ldots, v_{k}$, there exists k positions such that there exists one of $\{0,0 \ldots, 0,1\}$ or $\{1,1, \ldots, 1,0\},\{0,0 \ldots, 0,1,0\}$ or $\{1,1, \ldots, 1,0,1\}, \ldots$, and one of $\{1,0 \ldots, 0,0\}$ or $\{0,1,1, \ldots, 1\}$. What is the maximal size of such a set?
- Does the geometric interpretation of the discrete acute set problem generalize, as well?

Future Work

- Potential combinatorial generalization: for any k points $v_{1}, v_{2}, \ldots, v_{k}$, there exists k positions such that there exists one of $\{0,0 \ldots, 0,1\}$ or $\{1,1, \ldots, 1,0\},\{0,0 \ldots, 0,1,0\}$ or $\{1,1, \ldots, 1,0,1\}, \ldots$, and one of $\{1,0 \ldots, 0,0\}$ or $\{0,1,1, \ldots, 1\}$. What is the maximal size of such a set?
- Does the geometric interpretation of the discrete acute set problem generalize, as well?
- In other words, is it true that, given the combinatorial interpretation, that any two $k-1$ dimensional hyperplanes in the set of points form an acute angle?

Acknowledgements

I would like to thank:

- My mentor, Ao Sun
- Professor Larry Guth
- Dr. Tanya Khovanova
- MIT PRIMES program
- My parents

Outline

(2) Discrete Acute Set Problem

(3) Bounds in Discrete Acute Set Problem

4 Future Work

(5) Questions?

